| UBC Calculus Online Course Notes |

There are many examples in science and in day-to-day life in which quantities associated with some process or situation are linked through a relationship of some kind. For example, the volume of a cylinder depends on the radius and the height of the cylinder,
Thus, if one or more of the basic quantities changes (for example, the cylinder grows longer, or gets fatter), the others will change as well. The chain rule can be applied to determining how the change in one quantity will lead to changes in the other quantities related to it. (In some books, this topic is treated in a special chapter called "Related Rates", but since it is a simple application of the chain rule, it is hardly deserving of title that sets it apart.)
Now here is what we know: (1) The relationship of volume to radius and height (or "length") in a cylinder
(2) The additional fact that the radius and height of the "cylinder" are proportional. (The height is just the length of the balloon, and this is just another way of saying that their ratio is fixed.) We could use the symbol k for the constant relating length and radius.
(3) The fact that the Volume increases at a constant rate
where is the constant ("flow rate") of air into the balloon. Putting together what we know, we deduce that
Thus
At this point we must remember to use the chain rule to calculate the derivative in the above expression, since is a function of time which is then itself cubed in the expression. Thus,
We can now use (3) to answer the question posed, plugging in
we find that
Observe that the rate of increase of the radius is not constant ! When the radius is still small (e.g. , its rate of increase is relatively large, . But when the radius is already quite large, (e.g. ) its growth is much smaller, .
## For your consideration:(a) Explain why the radius seems to be changing more quickly when it is small than when it is larger.
(b) Finish the solution to this problem by determining the rate
of change of the length of the balloon. (Hint there is a simple way to
do this, using the relationship between length and radius.)
(Note: means where is a function of .) Thus, to proceed, we must use the Product Rule of Differentiation,
We must apply the chain rule to the expression involving , and we get
Simplifying this expression, and using the fact that we find that
Thus, at the instant that , the relationship between the rates of change of the radius and the length of the balloon are:
(Thus, if we know and we know one of the rates in the above expression, we can find the other.)
## For your consideration:(a) If , determine at the instant when the radius is 2 cm and the length is 10 cm. (Note: ).(b) If the balloon was blown up inside a cylindrical sleeve, so that its radius was kept fixed at , determine the rate at which its length would increase. (c) If the balloon is sealed, so that its volume is constant, and the "ends" are pushed in at a constant rate, , at what rate would the radius of the balloon change when .
(Notice that we have indicated which of the variables depend on time). Thus,
## For your consideration:You should check the units to make sure that they are consistent !
We now have a different situation since the volume is time dependent, but the temperature is not. Our relationship might indicate this as follows:
Thus
Applying the chain rule to calculate the derivative shown in this expression, we have
We can simplify this further using additional information given. Since we also know that the volume is changing at a constant rate, we can say more about the pressure. Since we are told that the gas is being compressed by the piston, its volume must be decreasing, so that
(where is some positive constant measuring the rate of compression). If the volume was initially we can even "guess" what the volume should be at some later time, namely
(Can you see why? This is the simplest dependence on time that has a constant rate of decrease, k, and satisfies the initial value ). We can use the expressions for volume and for its rate of change in our result to express pressure as a function of time alone, simply by "plugging in" for and its derivative:
Thus, we have a description of exactly how the pressure should change with time.
## For your consideration:(a) In mathematics, as in any other human endeavour, it is wise to retain a strong sense of skepticism, and question every "result" to determine whether it makes sense. For example, do you believe that the above expression makes sense for all values of the time t? Can you see what problem might be encountered when the volume shrinks all the way to zero ? For what values of t is this result valid?
where is the molecular weight of the gas, is the gas constant written in the units appropriate to this situation. (Note: .) Using this relationship, determine the rate of change of the average speed, that occurs if the temperature increases at a constant rate. |