important difference between definite integrals and the area under a curve

Ex. Area between curves

Find area between \(f(x) = -x^2 + 2x \) and \(g(x) = x \)

\(A = \int_a^b [f(x) - g(x)] \, dx \)

\(A \) is only finite area between \(f \) and \(g \)

\(\Rightarrow \) how to calculate \(A \)?

\(\Rightarrow \) boundaries of integral: \(f(x) = g(x) \)

\(-x(x-2) = x \rightarrow x_1 = 0 < a \)

\(+ (x-2) = 1 \rightarrow x_2 = 1 < b \)

\(\Rightarrow \int_0^1 [f(x) - g(x)] \, dx = \int_0^1 -x^2 + x \, dx \)

\(= \text{Riemann sums} = \frac{1}{6} \quad \text{by Eq!} \)
chapter 3: The fundamental theorem of calculus (FTC)

3.1 The definite integral

\[\int_a^b f(x) \, dx = \lim_{N \to \infty} \sum_{k=1}^N f(x_k) \Delta x \]

- \(\Delta x \): width of strips \(N \to \infty, \Delta x \to 0 \)
 \(\Rightarrow \Delta x \): width of infinitesimally thin strip
- bounds \(a, b \) are hidden in \(\Delta x \) and \(x_k \)
- \(x \) is another dummy variable (result does not depend on it)
 \[\Rightarrow \int_a^b f(x) \, dx = \int_a^\xi f(s) \, ds \]

- \(f(s) \) must be well-behaved in \([a, b]\)
 - defined
 \[\Rightarrow \text{counter ex. : } \sqrt{x} \text{ for } x < 0 \]
 - bounded (remain finite)
 \[\Rightarrow \text{counter ex. : } \frac{1}{x^2} \text{ for } x \to 0 \]
 - continuous
 \[\Rightarrow \text{counter ex. : } f(x) = \begin{cases} 1 & x > 0 \\ 0 & x \leq 0 \end{cases} \]
 \[\Rightarrow \text{no jumps} \]
 \[\Rightarrow \text{for } x < a \text{ or } x > b \ f(x) \text{ can be nasty.} \]
3.2 Properties of definite integrals

1) \[\int_{a}^{b} f(x) \, dx = 0 \]

Note: also holds for \(c > b \) or \(c < a \)!

(requires that \(f(x) \) is well behaved over larger integral)

2) \[\int_{a}^{b} f(x) \, dx = \int_{a}^{c} f(x) \, dx + \int_{c}^{b} f(x) \, dx \]

3) \[\int_{a}^{b} f(x) \, dx + \int_{a}^{b} g(x) \, dx = \int_{a}^{b} [f(x) + g(x)] \, dx \]

4) \[c \int_{a}^{b} f(x) \, dx = \int_{a}^{b} cf(x) \, dx \]

\(C \) : constant
5) \[\int_{a}^{b} f(x) \, dx = -\int_{b}^{a} f(x) \, dx \]

- area should not depend on whether we start at \(a \) and end in \(b \) or vice versa but definite integral changes sign.
- reason: \(\Delta x < 0 \) when starting at upper bound.

3.3 Areas and definite integrals

a) \[\int_{a}^{b} f(x) \, dx \]
\[A = \int_{a}^{b} f(x) \, dx > 0 \]

b) \[\int_{a}^{b} f(x) \, dx \]
\[\int_{a}^{b} f(x) \, dx < 0 \]
\[\rightarrow A = -\int_{a}^{b} f(x) \, dx \]

or \[\int_{a}^{b} |f(x)| \, dx \]
absolute value

\[\int_{a}^{b} f(x) \, dx = ? \]

\[A = A_1 + A_2 \]

\[\int_{a}^{b} f(x) \, dx = ? \]
\[A_1 = \int_a^k f(x) \, dx > 0, \quad A_2 = -\int_c^x f(x) \, dx < 0 \]

\[\int_a^k f(x) \, dx = A_1 - A_2 \]

Note: regions with \(f(x) < 0 \) make negative contributions to definite integral.

Overall area determined by adding pieces where \(f(x) > 0 \) and subtracting those where \(f(x) < 0 \)

\[\text{see ex. } \int x^3 - 3x^2 + 2x \, dx \text{ from chapter 2.} \]

In W&V3: 'signed area' \(\rightarrow \) interpret as 'definite integral'

3.4 Area as a function

\[A(x) = \int_a^x f(x) \, dx \]

\(\rightarrow \) bad notation!

what is \(x \)?

\(\rightarrow \) instead: \(A(s) = \int_a^s f(x) \, dx \) or \(A(x) = \int_a^x f(s) \, ds \)

How does \(A(x) \) change if \(x \) is slightly increased?

\[A(x+\Delta x) = \int_a^{x+\Delta x} f(s) \, ds \]

\[= \int_a^{x+\Delta x} f(s) \, ds + \int_{x+\Delta x}^x f(s) \, ds \]
\[
\begin{align*}
A(x) &= A(x) + \int_{x}^{x+\Delta x} f(s) \, ds \\
&\approx \Delta x \cdot f(x) \\
&\approx \Delta x \cdot f(x+\Delta x) \\
\Rightarrow \text{ change in } A(x): A(x+\Delta x) - A(x) &\approx \Delta x \cdot f(x) \\
\frac{A(x+\Delta x) - A(x)}{\Delta x} &\approx f(x) \\
\text{approx. improves for } \Delta x \to 0
\end{align*}
\]

\[
\lim_{\Delta x \to 0} \frac{A(x+\Delta x) - A(x)}{\Delta x} = f(x) = \frac{dA(x)}{dx} \quad (= A'(x))
\]

definition of derivative

\[
\Rightarrow A(x) = \int_{a}^{x} f(s) \, ds \quad \Rightarrow f(x) = \frac{dA(x)}{dx}
\]

\[\text{deep connection between differential and integral calculus}\]

\[\text{essence of FTC}\]

3.5. FTC

3.5.1 Part I

Let \(f(s) \) be bounded and continuous in interval \([a, b]\) and

\[
A(x) = \int_{a}^{x} f(s) \, ds
\]

Then for \(a \leq x \leq b \)

\[
\frac{dA}{dx} = f(x)
\]
Proof: see prev. section.

Recall derivatives:

\[g_1(x) = x^3 \Rightarrow \frac{dg_1}{dx} = 3x^2 \]
\[g_2(x) = x^3 + 5 \Rightarrow \frac{dg_2}{dx} = 3x^2 \]

\[g(x) = f(x) + C \quad \text{\(C \): const (does not depend on \(x \))} \]

\[\frac{dg}{dx} = \frac{df}{dx} \]

\[\rightarrow \text{adding const to fun. does not change its derivative} \]

\[\text{slope is derivative at a } f'(a) \]

Explore anti-derivatives \(\rightarrow \) reverse

\[f_1'(x) = 3x^2 \Rightarrow f_1(x) = \frac{x^3}{3} \]
\[f_2'(x) = 2x^2 \Rightarrow f_2(x) = \frac{x^3}{3} + 5 \]

\[\rightarrow \text{anti-derivatives only defined up to a constant} \]

\[f'(x) \rightarrow f(x) + C \quad \text{(=: F(x))} \]

\[\text{define } F(x) \text{ as \text{anti-derivative of } f(x)} \]
3.5.2 FTC - part II

Let \(f(x) \) be bounded and continuous over interval \([a, b]\).
Suppose \(F(x) \) is any anti-derivative of \(f(x) \) then
\[
A(x) = \int_a^x f(s) \, ds = F(x) - F(a)
\]

Proof: \(A(x) = \int_a^x f(s) \, ds = F(x) + C \)

part I: \(A(x) \) is anti-derivative of \(f(x) \)
so is \(F(x) \)
\[
A(a) = \int_a^a f(s) \, ds = F(a) + C = 0
\]
\[\rightarrow C = -F(a)\]

\[\rightarrow \text{plug in: } A(x) = \int_a^x f(s) \, ds = F(x) - F(a) \]

\[\rightarrow \text{important tool to determine definite integrals}\]
\[\rightarrow \text{no more Riemann sums}\]

3.6 Review of (anti-) derivatives

<table>
<thead>
<tr>
<th>function</th>
<th>derivative</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x^n)</td>
<td>(n \cdot x^{n-1})</td>
</tr>
<tr>
<td>(\sin x)</td>
<td>(\cos x)</td>
</tr>
<tr>
<td>(\cos x)</td>
<td>(-\sin x)</td>
</tr>
<tr>
<td>(e^x)</td>
<td>(e^x)</td>
</tr>
<tr>
<td>(\ln x)</td>
<td>(\frac{1}{x})</td>
</tr>
</tbody>
</table>

anti-derivatives ← functions
(plus constant)
3.7 Applications of FTC

Ex. 1) Find \(A = \int_0^1 (x+1) \, dx \)

a) geometry: \(A = \frac{3}{2} \).

- perfectly fine way to solve definite integral.

b) \(\int_0^1 (x+1) \, dx = \int_0^1 dx + \int_0^1 x \, dx \)

\[0 \quad \frac{d}{dx} \quad 1 \]

\(0 \quad \frac{d}{dx} \quad 1 \)

\[\int_0^1 dx = (x+C) \Big|_0^1 = 1+C - 0 - C = 1 \]

Notation: \(F(x) \bigg|_a^b = F(b) - F(a) \)

definition

\[\int_0^1 x \, dx = \frac{1}{2} x^2 + C \Big|_0^1 = \frac{1}{2} + C - C = \frac{1}{2} \]

0 + 2: \(\frac{3}{2} = A \checkmark \)

- in definite integrals the integration constant never shows up.

2) \(A = \int_{-1}^1 e^{-2x} \, dx = \frac{1}{2} e^{-2x} \Big|_{-1}^1 = \frac{1}{2} (e^{-2} - e^2) \)

- easy to check anti-derivatives by taking derivative
3) a) Calculate \(\int_{-2}^{2} x^3 - 4x \, dx \)

\[\int_{-2}^{2} x^3 - 4x \, dx = \left(\frac{1}{4} x^4 - 2x^2 \right) \bigg|_{-2}^{2} = 4 - 8 \quad \text{\color{red}{0}} \quad 4 + 8 = 0 \quad \text{\color{red}{0}} \quad \text{careful with signs} \]

\[\Rightarrow A_1 = A_2 \]

b) \(\int_{-2}^{0} x^3 - 4x \, dx - \int_{0}^{2} x^3 - 4x \, dx = -2 \int_{0}^{2} x^3 - 4x \, dx \)

\[= -2 \left(\frac{x^4}{4} - 2x^2 \right) \bigg|_{0}^{2} = -8 + 16 = 8 \]

Note: \(f(x) = x^3 - 4x \) is an odd function.

Recall: \(f(x) \) is odd if \(f(-x) = -f(x) \)

(point symmetry about origin)

Consider: \(\int_{a}^{b} f(x) \, dx \) with \(f(x) \) is odd (\(a \geq 0 \))

\[\int_{-a}^{a} f(x) \, dx = \int_{-a}^{0} f(x) \, dx + \int_{0}^{a} f(x) \, dx \]

\[\Rightarrow \quad x \rightarrow -x : \text{changes signs of boundaries and direction of integration} \]

\[= -\int_{-a}^{0} f(-x) \, dx + \int_{0}^{a} f(x) \, dx \]

\(f(x) \) is odd:

\[\int_{a}^{0} f(x) \, dx + \int_{0}^{a} f(x) \, dx = -\int_{a}^{0} f(x) \, dx + \int_{0}^{a} f(x) \, dx = 0 \]
The integral over an odd function with symmetric interval about zero is zero.

Ex 4) \(\int_{-\pi}^{\pi} \sin\left(\frac{x}{2}\right) \, dx = 0 \) (\(\sin x \) is odd function, interval symmetric about zero)

What about even functions?

If \(f(x) \) is even, then \(f(x) = f(-x) \) (reflection along y-axis)

\[
\int_{-a}^{a} f(x) \, dx = \int_{0}^{a} f(x) \, dx + \int_{0}^{-a} f(x) \, dx
\]

\(\quad \xrightarrow{x \to -x} \)

\[= -\int_{-a}^{0} f(-x) \, dx + \int_{0}^{a} f(x) \, dx = -\int_{a}^{0} f(x) \, dx + \int_{0}^{a} f(x) \, dx
\]

\[= 2 \int_{0}^{a} f(x) \, dx
\]

Ex 5) \(\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos x \, dx = 2 \int_{0}^{\frac{\pi}{2}} \cos x \, dx = 2 \cdot \sin x \bigg|_{0}^{\frac{\pi}{2}} = 2 \)