If distribution is symmetric about x then $\bar{x} = x_{1/2}$

otherwise \bar{x} shifted towards the tail

5.2 Application: High blood pressure

Blood vessel: length L, radius R, velocity $V(r)$

viscosity η

$V(r) = \frac{\Delta P}{4\eta L}$ from physics experiments

→ find flux of blood through vessel
(amount per time and per area)

cross section

→ velocity is same in ring

area of thin ring

$A_0(r) = \pi(r + dr)^2 - \pi r^2 = 2\pi r dr + dr^2 \pi$

→ for small dr: $dr \gg dr^2$

much bigger

$A_0(r) \approx 2\pi r dr \pi$ (circumference * thickness)
flux through ring: \(\mathbf{v}(r) \cdot \mathbf{a}_0(r) \)

flux through vessel:

\[
F(R) = \int_0^R 2\pi r \mathbf{v} \cdot \mathbf{a}_0 (r^2 - r^2) dr = \frac{\pi \Delta P}{2\eta l} \left(\frac{R^4 - r^4}{2} \right) \bigg|_0^R = \frac{\pi \Delta P}{2\eta l} \frac{R^4}{2} = \frac{\pi \Delta P}{8\eta l}
\]

Poiseille's law

Ex. If radius is decreased by \(\frac{3}{4} R \) what increase in pressure difference \(\Delta P \) is needed to maintain the same flux?

\[
F(R) = F\left(\frac{3}{4} R\right)
\]

for \(\Delta P \) for \(x \cdot \Delta P \) \(x \) times increase in pressure diff.

\[
x = \left(\frac{4}{3}\right)^4 \approx 3.2
\]

(HW)

\[
\text{reducing radius to } \frac{3}{4} R \text{ requires a 3.2-fold increase in } \Delta P \text{ to maintain the same flux.}
\]

5.3 Volumes – solids of revolution

for \(f(x) \) rotate \(f(x) \) around \(x \)-axis

\(\rightarrow \) find volume

1) cut thin slices

Volume of slice

\[
V(x) = \pi (f(x))^2 \Delta x
\]

2) add slices: \(V = \int_a^b \pi (f(x))^2 \, dx \)
Ex. Volume of sphere

semi-circle: \(y = f(x) = \sqrt{r^2 - x^2} \)

geometry: \(V = \frac{4}{3} \pi r^3 \)

using calculus: \(V = \int_{-r}^{r} f(x)^2 \, dx = 2\pi \int_{0}^{r} r^2 - x^2 \, dx \)

\[= 2\pi \left[r^2 x - \frac{x^3}{2} \right]_{0}^{r} = 2\pi \left(r^3 - \frac{r^3}{3} \right) = \frac{4\pi}{3} r^3 \]

Ex. Consider \(f(x) = a^2 - x^2 \)

First volume when rotating \(f(x) \) about different axes

a) rotate around \(x \)-axis from \(x = -a \) to \(x = a \)

\[V = \int_{-a}^{a} \pi \left(a^2 - x^2 \right)^2 \, dx = 2\pi \int_{0}^{a} a^4 - 2a^2 x^2 + x^4 \, dx \]

\[= 2\pi \left[a^4 x - \frac{2a^2 x^3}{3} + \frac{x^5}{5} \right]_{0}^{a} = \ldots = \frac{16}{15} \pi a^5 \]

football or lemon
2) Rotate around y-axis for $0 \leq x \leq a$

\[y = f(x) = a^2 - x^2 \]

\[V = \pi \int_0^a (a^2 - y)^2 dy = \pi \int_0^a (a^2 - (a^2 - x^2))^2 dy \]

\[= \pi \left(a^4 - \frac{a^4}{2} \right) = \frac{\pi}{2} a^4 \]

3) Rotate around $y = -c$ for $-a \leq x \leq a$

\[V = \pi \int_{-a}^a (f(x) + c)^2 dx = \frac{8}{15} a^5 + \frac{4}{3} a^3 c + ac^2 \]

| HW |

- Length of strips increases by c
- Radius of disk
- Shift function up by c
- Rotate around x-axis

- Lemon with tips cut off.
(a) Rotate around \(x = d \) for \(d \leq x \leq a \\

\[V = \pi \int_{0}^{a} d \cdot f(x)^2 \, dx \]

(b) \(f(x) \rightarrow f(x+d) = a^2 - (x+d)^2 \)

(c) Rotate the function \(f(x) \) to the left and rotate around the \(y \)-axis.

\[f(x) \rightarrow f(x+d) = a^2 - (x+d)^2 \]

(e) vartient for rotating around \(y \)-axis

Use shells for part d)

Use shells for part d)
\[V = \int_{0}^{a} 2\pi x \left(a^2 - (x + d)^2 \right) dx = 2\pi \left(\frac{x^2 a^2}{2} - \frac{x^4}{4} - 2d \frac{x^3}{3} - d^2 x^2 \right) \]

(shifting fn.)

\[\text{(HW)} \quad \frac{(a-d)^3(3a+d)}{12} \]

(can also use shells to rotate about x-axis if the transformed function)

5.4. Length of a curve

Find length \(L \) of curve of \(f(x) \) for \(a \leq x \leq b \)

\[\Delta l \approx \Delta x \sqrt{\left(\frac{dx}{dx} \right)^2 + \left(\frac{dy}{dx} \right)^2} \]

\(\Delta l \approx \frac{dx}{dx} \sqrt{1 + \left(\frac{dy}{dx} \right)^2} \)

\[y = f(x) \quad \Rightarrow \quad \frac{dy}{dx} = f'(x) \quad \Rightarrow \quad \Delta l = dx \sqrt{1 + (f'(x))^2} \]

\[L = \int_{a}^{b} \sqrt{1 + (f'(x))^2} \, dx \quad (= \int_{0}^{a} \rho \, ds) \]
Ex. Consider \(y = f(x) = x^3 + \frac{1}{12x} \). Find length \(L \) for \(1 \leq x \leq 2 \).

\[
\begin{align*}
\frac{dy}{dx} &= 3x^2 - \frac{1}{12x^2} \\
(f'(x))^2 &= 9x^4 - \frac{1}{2} + \frac{1}{144x^4} \\
L &= \int_1^2 \sqrt{1 + 9x^4 - \frac{1}{2} + \frac{1}{144x^4}} \, dx \\
&= \int_1^2 \sqrt{(3x^2 + \frac{1}{12x^2})^2} \, dx = (x^3 - \frac{1}{12x}) \bigg|_1^2 = 8 - \frac{1}{24} - 1 + \frac{1}{12} = \frac{7}{24}
\end{align*}
\]

Ex. Consider \(y = f(x) = x^2 \). Find \(L \) for \(1 \leq x \leq 2 \).

\[
\frac{dy}{dx} = 2x \Rightarrow (f'(x))^2 = 4x^2
\]

\[
L = \int_1^2 \sqrt{1 + 4x^2} \, dx = \ldots \quad \text{need all tools from ch. 6}
\]

solution: \(L = \left(\frac{1}{2} x \sqrt{1 + 4x^2} + \frac{1}{4} \ln \left| \sqrt{1 + 4x^2} + 2x \right| \right) \bigg|_1^2 = \ldots \)
Review: difference between centre of mass, \bar{x}, and point where to cut a piece into two pieces of equal weight, $x_{1/2}$.

$$\bar{x} = \frac{b+a}{2}$$

$\bar{x}_{1/2} = \bar{x}$ (distribution symmetric about \bar{x})

$\bar{x}_{1/2}$ unchanged

$$\bar{x} > x_{1/2}: \text{centre of mass is shifted towards the 'tail'}$$

\Rightarrow dikrit (use $a=0 \Rightarrow x_{1/2} = \frac{b}{2}, \bar{x} = \frac{5}{8}b$)
chapter 6: Techniques of integration

→ collection of tricks to find anti-derivatives
→ anti-derivatives are defined only up to a constant

\[\int f(x) \, dx = F(x) + C \text{, with } \frac{df}{dx} = f(x) \]

 indefinite integral

6.1 Differential Notation

→ for \(f(x) = y \) how does a small change in \(x \) translate into small changes in \(y \)?

\[\frac{dy}{dx} = f'(x) \]

\[\int dy = \int f'(x) \, dx \]

\[y = f(x) + C \]

6.2 Substitution

→ reverse of chain rule for derivatives

recall: \(\frac{d}{dx} F(u(x)) = \frac{dF(u)}{du} \cdot \frac{du}{dx} = F'(u(x)) \cdot u'(x) \)

\[= f(u(x)) \cdot u'(x) \text{ with } \frac{dF(x)}{dx} = f(x) \]
reverse \[\int f(u(x)) \cdot u'(x) \, dx = \int f(u(x)) \cdot \frac{du(x)}{dx} \, dx \]

\[= \int f(u) \, du = \int \frac{dF}{du} \, du = \int dF = F(u(x)) + C \]

\[\Rightarrow \text{substitution: if integrand is of form } \text{"function of another function times derivative of latter function"} \]

Ex. 1 \(\int x \cdot \cos(x^2) \, dx = ? \quad u = x^2 \implies \frac{du}{dx} = 2x \quad \rightarrow \quad dx = \frac{du}{2x} \)

\[= \int x \cdot \cos(u) \frac{1}{2x} \, du = \frac{1}{2} \sin(u) + C = \frac{1}{2} \sin(x^2) + C \]

Ex. 2 \(\int \sin^3 x \cdot \cos x \, dx = ? \quad u = \sin x, \quad \frac{du}{dx} = \cos x \)

\[= \int u^3 \cdot \cos x \frac{1}{\cos x} \, du \quad dx = du \cdot \frac{1}{\cos x} \]

\[= \frac{u^4}{4} + C = \frac{1}{4} \sin^4 x + C \]

Ex. 3 \(\int \frac{1}{x \cdot \ln x} \, dx = ? \quad u = \ln x \quad \frac{du}{dx} = \frac{1}{x} \quad dx = x \cdot du \)

\[= \int \frac{1}{x} \cdot u \, du = \ln |u| + C = \ln |\ln x| + C \]

Ex. 4 \(\int \frac{x^2}{\sqrt{1-x^3}} \, dx = ? \quad u = 1-x^3 \quad \frac{du}{dx} = -3x^2 \quad dx = -\frac{1}{3x^2} \, du \)

\[= -\frac{1}{3} \int \frac{x^2}{u^{1/2}} \frac{1}{x^2} \, du = \]
\[-\frac{2}{3} \sqrt{u} + C = -\frac{2}{3} \sqrt{1 - x^3} + C\]

a) use orig. var.: \(\left(-\frac{2}{3} \sqrt{1 - x^3} + C\right)|_0^1 = -\frac{2}{3} + \frac{2}{3} \sqrt{2}\)

b) change boundaries: \(\left(-\frac{2}{3} u' + C\right)|_2^1 = -\frac{2}{3} + \frac{2}{3} \sqrt{2}\)

Ex. 5. \(\int \frac{x^5}{1-x^3} \, dx = ? \quad u = 1-x^3, \quad \frac{du}{dx} = -3x^2\)

\[dx = \frac{-1}{3x^2} \, du\]

\[-\frac{1}{3} \int \frac{x^3}{1-u} \cdot \frac{1}{x^2} \, du\]

\[\text{problem! both } u \text{ and } x\]

\(\Rightarrow \text{use } x = \sqrt[3]{1-u} = (1-u)^{\frac{1}{3}} \rightarrow x^3 = 1-u\)

\[-\frac{1}{3} \int \frac{1-u}{1-u} \, du = \frac{1}{3} \int u - \frac{1}{1-u} \, du = \left(\frac{1}{3}\right)

\[= -\frac{2}{3} \sqrt{1-x^3} (2 + x^3) + C\]

Summary: Substitution

indefinite integral: \(\int f(g(x)) \cdot g'(x) \, dx\)

1) find substitution: \(u = g(x)\)

2) find new differential: \(\frac{du}{dx} = g'(x) \rightarrow dx = \frac{1}{g'(x)} \, du\)

3) rewrite integral: \(\int f(u) \, du\)

\(\rightarrow \text{new integral should be simpler}\)

\(\rightarrow \text{original variable must be eliminated}\)

\(\rightarrow \text{no guarantee of success}\)

4) solve new integral: \(F(u) + C \quad \text{don't forget!}\)
5) rewrite in terms of orig. var: \(F(g(x)) + C \)

definite integrals: \(\int_{a}^{b} f(g(x)) g'(x) \, dx \)

\(\rightarrow \) two variants:

a) 'change bounds': steps 1-4 above
 - first new bounds: \(a \rightarrow g(a) \), \(b \rightarrow g(b) \)
 - evaluate at new bounds: \(\frac{F(b)}{g(b)} - \frac{F(a)}{g(a)} \)

\(\rightarrow \) never flip bounds