> restart; > g:= x -> a*x-x^2; 2 g := x -> a x - x > a:= 3.8008; a := 3.8008 > y[0]:= a/2; y[0] := 1.900400000 > for jj from 1 to 99 do y[jj]:= g(y[jj-1]) od: > stair:= x -> plot([[x,x],[x,g(x)] > ,[g(x),g(x)]]); stair := x -> plot([[x, x], [x, g(x)], [g(x), g(x)]]) > with(plots): > p:= plot({x, g(x)}, x=0 .. a): > display({p, seq(stair(y[jj]), jj=0..10)}); > y[99]; 2.130930356 > Q:= x -> ((g@@8)(x)-(g@@8)(y[99]))/(x - y[99]); (8) (8) g (x) - g (y[99]) Q := x -> --------------------- x - y[99] > plot({Q(x), -1, 1}, x = 2.12 .. 2.14); -------------------------------------------------------------------------------- > # Newton's Method # ------------- # # > f:= 'f'; f := f > newt:= x -> x - f(x)/D(f)(x); f(x) newt := x -> x - ------- D(f)(x) > dnewt:=D(newt); (2) f(x) D (f)(x) dnewt := x -> --------------- 2 D(f)(x) > taylor(newt(x), x=c, 3); / (2) \ | f(c) D (f)(c)| | D(f)(c) - ---------------| / f(c) \ | D(f)(c) | |c - -------| + |1 - -------------------------| (x - c) - \ D(f)(c)/ \ D(f)(c) / (3) 2 (2) (2) (2) f(c) D (f)(c) (- D(f)(c) + f(c) D (f)(c)) D (f)(c) 1/2 D (f)(c) - 1/2 --------------- + ----------------------------------------- D(f)(c) 2 D(f)(c) -------------------------------------------------------------------------------- D(f)(c) 2 3 (x - c) + O((x - c) ) > subs(f(c)=0,"); (2) D (f)(c) 2 3 c + 1/2 ---------- (x - c) + O((x - c) ) D(f)(c) > f:= x -> x^3 + x^2 - 2*x; 3 2 f := x -> x + x - 2 x > newt(x)/x^2; 3 2 x + x - 2 x x - -------------- 2 3 x + 2 x - 2 ------------------ 2 x > normal("); 2 x + 1 -------------- 2 3 x + 2 x - 2 > plot({1,-1,newt(x)/x}, x=-3 .. 3, -3 .. 3); > plot((newt@@2)(x), x = -3..3, -3 .. 3); > > plot((newt@@4)(x), x= -3 .. 3, -3 .. 3); > plot((newt@@2)(x)-x, x = 0.4 .. 0.6, -3 .. 3); > x[0]:=fsolve((newt@@2)(x)-x, x= 0.45 .. 0.46); x[0] := .4588411303 > x[1]:= newt(x[0]); x[1] := -.8957813727 > x[2]:= newt(x[1]); x[2] := .4588411263 > dnewt(x[1]) * dnewt(x[2]); 47.17543445 > # Can we find a polynomial for which Newton's method has a stable 2-cycle? #