3.3 Assignment 3 Solutions(Israel's)

# Math 210 Sec. 201
# Solutions to Assignment 3
# 
# 1. 
> r:= cos(theta)^2:
> L:= Int(sqrt(r^2 + diff(r,theta)^2), theta = -Pi/2 .. Pi/2);

               1/2 Pi
                 /
                |                4               2           2 1/2
       L :=     |     (cos(theta)  + 4 cos(theta)  sin(theta) )    dtheta
                |
               /
            - 1/2 Pi
> L:= int(cos(theta)*sqrt(cos(theta)^2+4*sin(theta)^2), theta = -Pi/2 .. Pi/2);

                1/2 Pi
                  /
                 |                           2               2 1/2
        L :=     |     cos(theta) (cos(theta)  + 4 sin(theta) )    dtheta
                 |
                /
             - 1/2 Pi
> with(student):


> changevar(x=sin(theta),L,x);

                                    1/2          1/2
                           2 + 1/3 3    arcsinh(3   )
> convert(",ln);

                                     1/2         1/2
                            2 + 1/3 3    ln(2 + 3   )
> evalf(");

                                   2.760345997
# 2. (a)
> f:= x -> x^11:


# The following definitions are copied from Lesson 18.
> h:= n ->(b-a)/n:
> X:= (i,n) -> a + i*(b-a)/n:
> midrule:= n -> 
>    h(n)*sum(f((X(i,n)+X(i+1,n))/2), i = 0 .. n-1);
> traprule:= n ->
>    h(n) * sum((f(X(i,n))+f(X(i+1,n)))/2, i=0..n-1); 
> simpson:= n -> 
>    h(n) * sum(1/3*f(X(2*i,n))+4/3*f(X(2*i+1,n))+1/3*f(X(2*i+2,n)), i=0..n/2-1);
> J:= int(f(x), x=a..b);

                               /n - 1                                 \
                               |-----                                 |
                               | \                                    |
          midrule := n -> h(n) |  )   f(1/2 X(i, n) + 1/2 X(i + 1, n))|
                               | /                                    |
                               |-----                                 |
                               \i = 0                                 /

                             /n - 1                                      \
                             |-----                                      |
                             | \                                         |
       traprule := n -> h(n) |  )   (1/2 f(X(i, n)) + 1/2 f(X(i + 1, n)))|
                             | /                                         |
                             |-----                                      |
                             \i = 0                                      /

simpson := n -> h(n)

    /1/2 n - 1                                                                 \
    |  -----                                                                   |
    |   \                                                                      |
    |    )     (1/3 f(X(2 i, n)) + 4/3 f(X(2 i + 1, n)) + 1/3 f(X(2 i + 2, n)))|
    |   /                                                                      |
    |  -----                                                                   |
    \  i = 0                                                                   /

                                       b
                                       /
                                      |
                                J :=  |  f(x) dx
                                      |
                                     /
                                     a
# Now define ME, TE and SE as functions of n.
> ME:= unapply(J - midrule(n), n);

                                                         10            8  3
                   12         12                      a b             a  b
  ME := n -> 1/12 b   - 1/12 a   - (b - a) (7665/2048 ----- + 1705/96 -----
                                                         9               5
                                                        n               n

                     3  8                              8  3              10
                    a  b          9  2                a  b              a   b
       - 48895/1024 ----- + 1/12 b  a  n + 63875/2048 ----- + 7665/2048 -----
                       7                                 9                 9
                      n                                 n                 n

                11               4  7                           9  2
               a                a  b          7  4             a  b
       + 77/64 --- - 38325/1024 ----- + 1/12 a  b  n - 1705/96 -----
                 3                 9                              5
                n                 n                              n

                  5  6             7  4                              5  6
                 a  b             a  b          6  5                a  b
       + 341/192 ----- - 1705/192 ----- + 1/12 a  b  n + 17885/1024 -----
                    5                5                                 9
                   n                n                                 n

                     3  8               10              7  4               2  9
                    a  b             a b               a  b               a  b
       + 63875/2048 ----- + 1705/192 ----- + 23749/512 ----- + 29337/1024 -----
                       9                5                 7                  7
                      n                n                 n                  n

                8  3                                          6  5
               a  b            10           10               a  b
       - 77/64 ----- + 1/12 a b   n + 1/12 a   b n + 341/192 -----
                  3                                             5
                 n                                             n

                     7  4               2  9           10                4  7
                    a  b               a  b           a   b             a  b
       - 38325/1024 ----- - 89425/6144 ----- - 231/64 ----- + 23749/512 -----
                       9                  9              3                 7
                      n                  n              n                 n

                                    8  3            9  2          10
               9  2                a  b            b  a          a   b
       + 1/12 a  b  n - 48895/1024 ----- - 1705/96 ----- + 11/24 -----
                                      7               5            n
                                     n               n

                  10             10               6  5           2  9
               a b              a   b            a  b           a  b
       + 11/24 ----- + 1705/192 ----- - 9779/512 ----- + 231/64 -----
                 n                 5                7              3
                                  n                n              n

                     6  5            8  3          3  8
                    a  b            b  a          a  b          3  8
       + 17885/1024 ----- + 1705/96 ----- - 77/64 ----- + 1/12 a  b  n
                       9               5             3
                      n               n             n

                   4  7              10                                9  2
                  a  b              b   a         4  7                a  b
       - 1705/192 ----- - 9779/1024 ----- + 1/12 a  b  n - 89425/6144 -----
                     5                 7                                 9
                    n                 n                                 n

                 10                 9  2             5  6
                b   a              a  b             a  b          8  3
       - 231/64 ----- + 29337/1024 ----- - 9779/512 ----- + 1/12 a  b  n
                   3                  7                7
                  n                  n                n

                 9  2                             10            11
                a  b          5  6               a   b         a             11
       + 231/64 ----- + 1/12 a  b  n - 9779/1024 ----- - 11/24 --- + 1/12 n b
                   3                                7           n
                  n                                n

                  11              11              11              11
                 a               a               a               b
       - 341/192 --- + 1397/1024 --- - 2555/6144 --- - 2555/6144 ---
                   5               7               9               9
                  n               n               n               n

                    11            11          11          11
                   b             b           b           b           11
       + 1397/1024 --- - 341/192 --- + 77/64 --- - 11/24 --- + 1/12 a   n)/n
                     7             5           3          n
                    n             n           n
> TE:= unapply(J - traprule(n), n);

                                                     10         8  3
                  12         12                   a b          a  b
 TE := n -> 1/12 b   - 1/12 a   - (b - a) (- 15/4 ----- - 55/3 -----
                                                     9            5
                                                    n            n

               3  8                         8  3         10           11
              a  b          9  2           a  b         a   b        a
      + 385/8 ----- + 1/12 b  a  n - 125/4 ----- - 15/4 ----- - 11/8 ---
                 7                            9            9           3
                n                            n            n           n

              4  7                        9  2         5  6         7  4
             a  b          7  4          a  b         a  b         a  b
      + 75/2 ----- + 1/12 a  b  n + 55/3 ----- - 11/6 ----- + 55/6 -----
                9                           5            5            5
               n                           n            n            n

                             5  6          3  8           10          7  4
              6  5          a  b          a  b         a b           a  b
      + 1/12 a  b  n - 35/2 ----- - 125/4 ----- - 55/6 ----- - 187/4 -----
                               9             9            5             7
                              n             n            n             n

               2  9         8  3                                       6  5
              a  b         a  b            10           10            a  b
      - 231/8 ----- + 11/8 ----- + 1/12 a b   n + 1/12 a   b n - 11/6 -----
                 7            3                                          5
                n            n                                          n

              7  4           2  9         10            4  7
             a  b           a  b         a   b         a  b          9  2
      + 75/2 ----- + 175/12 ----- + 33/8 ----- - 187/4 ----- + 1/12 a  b  n
                9              9            3             7
               n              n            n             n

               8  3         9  2          10              10         10
              a  b         b  a          a   b         a b          a   b
      + 385/8 ----- + 55/3 ----- - 11/12 ----- - 11/12 ----- - 55/6 -----
                 7            5            n             n             5
                n            n                                        n

              6  5         2  9         6  5         8  3         3  8
             a  b         a  b         a  b         b  a         a  b
      + 77/4 ----- - 33/8 ----- - 35/2 ----- - 55/3 ----- + 11/8 -----
                7            3            9            5            3
               n            n            n            n            n

                             4  7         10                            9  2
              3  8          a  b         b   a         4  7            a  b
      + 1/12 a  b  n + 55/6 ----- + 77/8 ----- + 1/12 a  b  n + 175/12 -----
                               5            7                             9
                              n            n                             n

              10            9  2         5  6                        9  2
             b   a         a  b         a  b          8  3          a  b
      + 33/8 ----- - 231/8 ----- + 77/4 ----- + 1/12 a  b  n - 33/8 -----
                3             7            7                           3
               n             n            n                           n

                             10            11                      11         11
              5  6          a   b         a             11        a          a
      + 1/12 a  b  n + 77/8 ----- + 11/12 --- + 1/12 n b   + 11/6 --- - 11/8 ---
                               7           n                        5          7
                              n                                    n          n

              11         11         11         11         11          11
             a          b          b          b          b           b
      + 5/12 --- + 5/12 --- - 11/8 --- + 11/6 --- - 11/8 --- + 11/12 ---
               9          9          7          5          3          n
              n          n          n          n          n

              11
      + 1/12 a   n)/n
> SE:= unapply(J - simpson(n), n);

                                                   10           8  3
                  12         12                 a b            a  b
 SE := n -> 1/12 b   - 1/12 a   - (b - a) (1275 ----- + 1100/3 -----
                                                   9              5
                                                  n              n

                3  8                         8  3         10           11
               a  b          9  2           a  b         a   b        a
      - 8085/2 ----- + 1/12 b  a  n + 10625 ----- + 1275 ----- + 11/2 ---
                  7                            9            9           3
                 n                            n            n           n

               4  7                          9  2          5  6          7  4
              a  b          7  4            a  b          a  b          a  b
      - 12750 ----- + 1/12 a  b  n - 1100/3 ----- + 110/3 ----- - 550/3 -----
                 9                             5             5             5
                n                             n             n             n

                             5  6          3  8            10         7  4
              6  5          a  b          a  b          a b          a  b
      + 1/12 a  b  n + 5950 ----- + 10625 ----- + 550/3 ----- + 3927 -----
                               9             9             5            7
                              n             n             n            n

                2  9         8  3                                        6  5
               a  b         a  b            10           10             a  b
      + 4851/2 ----- - 11/2 ----- + 1/12 a b   n + 1/12 a   b n + 110/3 -----
                  7            3                                           5
                 n            n                                           n

               7  4            2  9         10           4  7
              a  b            a  b         a   b        a  b          9  2
      - 12750 ----- - 14875/3 ----- - 33/2 ----- + 3927 ----- + 1/12 a  b  n
                 9               9            3            7
                n               n            n            n

                8  3           9  2          10           6  5         2  9
               a  b           b  a          a   b        a  b         a  b
      - 8085/2 ----- - 1100/3 ----- + 550/3 ----- - 1617 ----- + 33/2 -----
                  7              5             5            7            3
                 n              n             n            n            n

              6  5           8  3         3  8                         4  7
             a  b           b  a         a  b          3  8           a  b
      + 5950 ----- + 1100/3 ----- - 11/2 ----- + 1/12 a  b  n - 550/3 -----
                9              5            3                            5
               n              n            n                            n

                10                             9  2         10             9  2
               b   a         4  7             a  b         b   a          a  b
      - 1617/2 ----- + 1/12 a  b  n - 14875/3 ----- - 33/2 ----- + 4851/2 -----
                  7                              9            3              7
                 n                              n            n              n

              5  6                        9  2                          10
             a  b          8  3          a  b          5  6            a   b
      - 1617 ----- + 1/12 a  b  n + 33/2 ----- + 1/12 a  b  n - 1617/2 -----
                7                           3                             7
               n                           n                             n

                            11          11          11          11          11
                11         a           a           a           b           b
      + 1/12 n b   - 110/3 --- + 231/2 --- - 425/3 --- - 425/3 --- + 231/2 ---
                             5           7           9           9           7
                            n           n           n           n           n

               11         11
              b          b           11
      - 110/3 --- + 11/2 --- + 1/12 a   n)/n
                5          3
               n          n
# b) To plot these, we need to take particular values of a and b,
# e.g. a=0, b=1.
> a:= 0; b:= 1;
> plot({n^2 * ME(n), n^2* TE(n)}, n = 1 .. 20);

                                     a := 0

                                     b := 1
# The Midpoint error is on the top, and the Trapezoid error is on the bottom.  We see that the Midpoint 
# error has about half the absolute value of the Trapezoid error, and the opposite sign. 
# The Midpoint error is approximately 0.45/n^2, and the Trapezoid error approximately -0.9/n^2.


> plot(n^4*SE(n), n = 2 .. 40);


# The Simpson's Rule error is approximately -5.4/n^4 for large n.
# 
# (c) For this we need a and b to be symbolic again.
> a:= 'a': b:= 'b':


> Mcoeffs:= [seq(coeff(expand(ME(n)),n,-2*jj), jj=1..5)];

Mcoeffs := [

 11     11    11   10  2    11   10  2    11   12    11   11      11   12
---- b a   + ---- b   a  - ---- a   b  + ---- b   - ---- b   a - ---- a  ,
 12           24            24            24         12           24

   77     11    77   8  4    77   9  3    77   11     231  10  2    77   9  3
- ---- b a   + ---- a  b  - ---- a  b  + ---- b   a - --- b   a  + ---- b  a
   16           64           16           16           32           16

       231  10  2    77   12    77   12    77   8  4
     + --- a   b  + ---- a   - ---- b   - ---- b  a ,
        32           64         64         64

1705  8  4   1705  10  2   1705  9  3   341  7  5   1705  8  4   1705  9  3
---- b  a  + ---- b   a  - ---- b  a  + --- a  b  - ---- a  b  + ---- a  b
 64           64            48           32          64           48

       1705  10  2   341  11     341  5  7   341  12   341  12   341    11
     - ---- a   b  - --- b   a - --- a  b  + --- b   - --- a   + --- b a  ,
        64            32          32         192       192        32

  1397    11   96393  8  4   9779  9  3   1397  11     9779  9  3   96393  8  4
- ---- b a   + ----- a  b  - ---- a  b  + ---- b   a + ---- b  a  - ----- b  a
   128          1024          128          128          128          1024

       9779  10  2   9779  10  2   4191  5  7   4191  7  5   1397  12   1397  12
     + ---- a   b  - ---- b   a  + ---- a  b  - ---- a  b  - ---- b   + ---- a
        256           256           64           64          1024       1024

    ,

12775    11   12775  11     140525  8  4   28105  5  7   140525  9  3
----- b a   - ----- b   a + ------ b  a  - ----- a  b  - ------ b  a
 3072          3072          2048           512           3072

       28105  10  2   28105  7  5   140525  8  4   140525  9  3   28105  10  2
     + ----- b   a  + ----- a  b  - ------ a  b  + ------ a  b  - ----- a   b
        1536           512           2048           3072           1536

       2555  12   2555  12
     + ---- b   - ---- a                                                      ]
       6144       6144
> shouldbe := [ seq((b-a)^(2*jj)*((D@@(2*jj-1))(f)(b) - (D@@(2*jj-1))(f)(a)), jj = 1 .. 5) ];

                        2      10       10          4       8        8
    shouldbe := [(b - a)  (11 b   - 11 a  ), (b - a)  (990 b  - 990 a ),

               6         6          6          8           4            4
        (b - a)  (55440 b  - 55440 a ), (b - a)  (1663200 b  - 1663200 a ),

               10            2             2
        (b - a)   (19958400 b  - 19958400 a )]
> Mcs:= seq(normal(Mcoeffs[kk]/shouldbe[kk]), kk = 1 .. 5);

                                      31         127         73
              Mcs := 1/24, -7/5760, ------, - ---------, ----------
                                    967680    154828800  3503554560
> Tcoeffs:= [seq(coeff(expand(TE(n)),n,-2*jj), jj=1..5)];

Tcoeffs := [

        11      11   12    11   10  2    11   12    11   10  2           11
  11/6 b   a - ---- b   + ---- a   b  + ---- a   - ---- b   a  - 11/6 b a  ,
                12         12            12         12

        12         9  3         10  2         8  4         9  3         11
  11/8 b   + 11/2 a  b  - 33/4 a   b  + 11/8 b  a  - 11/2 b  a  - 11/2 b   a

               10  2         8  4           11         12
       + 33/4 b   a  - 11/8 a  b  + 11/2 b a   - 11/8 a  ,

           9  3         10  2         8  4         12         8  4          9  3
  - 110/3 a  b  + 55/2 a   b  + 55/2 a  b  + 11/6 a   - 55/2 b  a  + 110/3 b  a

             7  5         10  2         12         11       5  7       11
       - 11 a  b  - 55/2 b   a  - 11/6 b   - 11 b a   + 11 a  b  + 11 b   a,

        12       9  3       5  7         12       9  3         10  2       11
  11/8 b   + 77 a  b  - 66 a  b  - 11/8 a   - 77 b  a  - 77/2 a   b  - 11 b   a

                8  4          8  4         11       7  5         10  2
       + 759/8 b  a  - 759/8 a  b  + 11 b a   + 66 a  b  + 77/2 b   a ,

           8  4          9  3         11           12         12          9  3
  - 275/4 b  a  + 275/6 b  a  + 25/6 b   a - 5/12 b   + 5/12 a   - 275/6 a  b

             7  5         10  2          8  4         10  2           11
       - 55 a  b  - 55/3 b   a  + 275/4 a  b  + 55/3 a   b  - 25/6 b a

             5  7
       + 55 a  b                                                              ]
> Tcs:= seq(normal(Tcoeffs[kk]/shouldbe[kk]), kk = 1 .. 5);

              Tcs := -1/12, 1/720, -1/30240, 1/1209600, -1/47900160
> Scoeffs:= [seq(coeff(expand(SE(n)),n,-2*jj), jj=1..5)];

Scoeffs := [0,

        8  4         11       10  2         8  4       9  3       9  3
- 11/2 b  a  - 22 b a   + 33 a   b  + 11/2 a  b  - 22 a  b  + 22 b  a

           11         10  2         12         12
     + 22 b   a - 33 b   a  - 11/2 b   + 11/2 a  ,

     10  2        11             9  3        5  7          11        8  4
550 b   a  - 220 b   a + 2200/3 a  b  - 220 a  b  + 220 b a   + 550 b  a

            10  2        8  4        7  5           9  3          12          12
     - 550 a   b  - 550 a  b  + 220 a  b  - 2200/3 b  a  + 110/3 b   - 110/3 a

    ,

         11         10  2         9  3            8  4         10  2        11
- 924 b a   + 3234 a   b  - 6468 a  b  - 15939/2 b  a  - 3234 b   a  + 924 b   a

                8  4         7  5         9  3         5  7          12
     + 15939/2 a  b  - 5544 a  b  + 6468 b  a  + 5544 a  b  - 231/2 b

              12
     + 231/2 a  ,

       8  4            10  2            9  3          5  7           11
23375 b  a  + 18700/3 b   a  + 46750/3 a  b  - 18700 a  b  - 4250/3 b   a

                10  2             11            9  3          7  5          8  4
     - 18700/3 a   b  + 4250/3 b a   - 46750/3 b  a  + 18700 a  b  - 23375 a  b

              12          12
     + 425/3 b   - 425/3 a

]
> Scs:= seq(normal(Scoeffs[kk]/shouldbe[kk]), kk = 1 .. 5);

                                                          17
                   Scs := 0, -1/180, 1/1512, -1/14400, -------
                                                       2395008
# (d)  Let's try it for x^13.
> f:= x -> x^13:


# We must repeat the definitions of J, ME, TE, SE etc.  The coefficients should go up to jj=6 this time.
> J:= int(f(x), x=a..b):
> ME:= unapply(J - midrule(n), n):
> TE:= unapply(J - traprule(n), n):
> SE:= unapply(J - simpson(n), n):
> Mcoeffs:= [seq(coeff(expand(ME(n)),n,-2*jj), jj=1..6)]:
> Tcoeffs:= [seq(coeff(expand(TE(n)),n,-2*jj), jj=1..6)]:
> Scoeffs:= [seq(coeff(expand(SE(n)),n,-2*jj), jj=1..6)]:
> shouldbe := [ seq((b-a)^(2*jj)*((D@@(2*jj-1))(f)(b) - (D@@(2*jj-1))(f)(a)), jj = 1 .. 6) ]:
> Mcs:= seq(normal(Mcoeffs[kk]/shouldbe[kk]), kk = 1 .. 6);
> Tcs:= seq(normal(Tcoeffs[kk]/shouldbe[kk]), kk = 1 .. 6);
> Scs:= seq(normal(Scoeffs[kk]/shouldbe[kk]), kk = 1 .. 6);

                            31         127         73             1414477
    Mcs := 1/24, -7/5760, ------, - ---------, ----------, - ----------------
                          967680    154828800  3503554560    2678117105664000

                                                                  691
      Tcs := -1/12, 1/720, -1/30240, 1/1209600, -1/47900160, -------------
                                                             1307674368000

                                                  17         21421
           Scs := 0, -1/180, 1/1512, -1/14400, -------, - -----------
                                               2395008    29719872000
# (e) 
> a:= 0: b:= 1: f:= exp:
> J:= int(f(x), x=a..b):
> TE:= unapply(J - traprule(n), n);

                                  exp(1) (1 + exp(1/n))       1 + exp(1/n)
                              1/2 --------------------- - 1/2 ------------
                                       exp(1/n) - 1           exp(1/n) - 1
      TE := n -> exp(1) - 1 - --------------------------------------------
                                                    n
> formula:= n -> sum( Tcs[j] *(b-a)^(2*j)*((D@@(2*j-1))(f)(b) - (D@@(2*j-1))(f)(a))/ n^(2*j), j = 1 .. 5); 

                   5
                 -----               (2 j)   (2 j - 1)          (2 j - 1)
                  \    Tcs[j] (b - a)      (D         (f)(b) - D         (f)(a))
 formula := n ->   )   ---------------------------------------------------------
                  /                               (2 j)
                 -----                           n
                 j = 1
> Digits:= 30:
> seq(evalf(nn^12 * (TE(nn)-formula(nn))), nn = 1 .. 10);

                                  Digits := 30

                          -9                       -9                     -9
  .88554587380646207944*10  , .90226022060161953*10  , .905424963218222*10  ,

                       -9                  -9                 -9
      .9065378753292*10  , .907053921534*10  , .90733448936*10  ,

                    -9                -9               -9              -9
      .9075037465*10  , .9076136333*10  , .907688984*10  , .90774289*10
# It certainly appears to be approaching a limit, perhaps somewhere around .908 * 10^(-9).
# 
# (f)  Since all derivatives of f(x) = 1/(2 + cos(x)) are the same at 0 and at 2 Pi, the formula would say that 
# the error is O(n^(-m)) for every m, i.e. it decreases faster than any power of m.
> n:= 20: a:= 0: b:= 2*Pi: f:= x -> 1/(2+cos(x)):
> J:= int(f(x), x=a .. b);

                                          1/2
                                J := 2/3 3    Pi
> evalf(J - traprule(n));

                                                   -10
                           -.2640573654902402695*10
> evalf(J - midrule(n));

                                                  -10
                           .2640573654883181638*10
> evalf(J - simpson(n));

                                                     -5
                         .461370711086269911080003*10
# The Trapezoid and Midpoint Rule errors are almost exactly equal in magnitude, and both very small.  
# The Simpson's Rule error is much larger.  This is rather surprising at first sight.  The point is that the 
# terms that are the main contributions to the errors for most functions happen to be 0 for this f.  The error 
# that there is, goes rapidly to 0 as 
# n grows.  There is no reason to expect the Midpoint Rule error to be approximately -1/2 times the 
# Trapezoid Rule error, as was the case for those terms that happened to be 0 in this case.  So the Simpson's 
# Rule error for n = 20, which is a 2/3 : 1/3 mixture of the Midpoint and Trapezoid Rule errors for n=10, is 
# of the same order of magnitude as those errors.  But these are much larger than the Midpoint and 
# Trapezoid Rule errors for n=20, because the errors converge to 0 so rapidly as n -> infinity.
# 
# 3.(a)  I'll keep most of the definitions from question 2, changing what is needed.  Other definitions come 
# from Lesson 19.  I'll use Digits = 20, because some of the errors are very small.
> a:= 1: b:= 3: n:= 'n': Digits:= 20:
> f:= x -> 1/(x^2 - 2*x + 5):
> J:= int(f(x), x=a .. b); Je:=evalf(J);

                                   J := 1/8 Pi

                           Je := .39269908169872415481
> for jj from 1 to 5 do R[jj,1]:= evalf(traprule(2^jj)) od:


> for kk from 2 to 5 do 
>   for jj from kk to 5 do
>     R[jj,kk]:= (4^(kk-1)*R[jj,kk-1]-R[jj-1,kk-1])/(4^(kk-1)-1) od od;
> [seq(R[jj,1],jj=1..5)]; [seq(R[jj,2],jj=2..5)];\

> [seq(R[jj,3],jj=3..5)]; [seq(R[jj,4],jj=4..5)];
> R[5,5];

     [.38750000000000000000, .39139705882352941176, .39237356181138612617,

         .39261770150517361183, .39267873664687180415]

     [.39269607843137254900, .39269906280733836430, .39269908140310277370,

         .39269908169410453493]

      [.39269926176573608532, .39269908264282040100, .39269908171350465235]

                 [.39269907979959951713, .39269908169875360872]

                              .39269908170620127181
# (b) For int(x^11, x=0 .. 1):
> a:= 0: b:= 1: f:= x -> x^11: 
> J:= int(f(x), x=a..b); Je:= evalf(J);

                                    J := 1/12

                          Je := .083333333333333333333
> for jj from 1 to 5 do R[jj,1]:= evalf(traprule(2^jj)) od:
> for kk from 2 to 5 do 
>   for jj from kk to 5 do
>     R[jj,kk]:= (4^(kk-1)*R[jj,kk-1]-R[jj-1,kk-1])/(4^(kk-1)-1) od od;


> seq([ Je - R[nn,nn], R[nn,nn-1]-R[nn,nn]], nn=2..5);

             [-.014159838358561197919, .038187742233276367188],

                 [-.000346307953198750807, .000863345650335152949],

                                       -5                      -5
                 [-.1179364820321403*10  , .5392634193412958*10  ],

                                   -9                   -8
                 [-.388051072754*10  , .4605378004879*10  ]
# In each of these cases the actual error in R[n,n] is less in absolute value than R[n,n-1] - R[n,n].
> f:= x -> x^41: J:= int(f(x), x=a..b); Je:= evalf(J);

                                    J := 1/42

                          Je := .023809523809523809524
> for jj from 1 to 5 do R[jj,1]:= evalf(traprule(2^jj)) od:
> for kk from 2 to 5 do 
>   for jj from kk to 5 do
>     R[jj,kk]:= (4^(kk-1)*R[jj,kk-1]-R[jj-1,kk-1])/(4^(kk-1)-1) od od;


> seq([ Je - R[nn,nn], R[nn,nn-1]-R[nn,nn]], nn=2..5);

             [-.059526323670175724408, .041666038130131959938],

                 [-.015824956803071526056, .002731335429194012396],

                 [-.001879668742061791717, .000217895125953277100],

                                                               -5
                 [-.000062025551328686623, .7100168713801191*10  ]
# In each of these cases the actual error in R[n,n] is greater in absolute value than R[n,n-1] - R[n,n].
# (c) No, it isn't, as we see above for k = 41.  
# (d) R[n,n] is exactly correct for integrating powers up to x^(2*n-1).  So for x^41 we would need 
# R[21,21].   This would require calculating the Trapezoid Rule with up
# to 2^21 intervals.
> 2^21;

                                     2097152
# That's not very practical.