Solutions to Homework 4 (Sjerve)

#                              
# 
#                                 HOMEWORK ASSIGNMENT # 4, 
#                                    
#                                           Due March 15, 1996
# 
# 
--------------------------------------------------------------------------------
#  QUESTION #1
#      
#      Find all solutions of the following system of equations
#                       
#                         x+y+z=-2, x^2+y^2+z^2=-2, x^3+y^3+z^3=-2.
# 
--------------------------------------------------------------------------------
# SOLUTION:
--------------------------------------------------------------------------------
> restart;
--------------------------------------------------------------------------------
> eq1:=x+y+z=-2;eq2:=x^2+y^2+z^2=-2;eq3:=x^3+y^3+z^3=-2;

                              eq1 := x + y + z = -2

                                    2    2    2
                            eq2 := x  + y  + z  = -2

                                    3    3    3
                            eq3 := x  + y  + z  = -2
--------------------------------------------------------------------------------
# From eq1 we see that z=-x-y-2, so we substitute this into eq2 and eq3, obtaining 2 
# equations in x and y.
--------------------------------------------------------------------------------
> eq4:=subs(z=-x-y-2,eq2);

                              2    2                2
                      eq4 := x  + y  + (- x - y - 2)  = -2
--------------------------------------------------------------------------------
> eq5:=subs(z=-x-y-2,eq3);

                              3    3                3
                      eq5 := x  + y  + (- x - y - 2)  = -2
--------------------------------------------------------------------------------
> f:=x^2+y^2+(x+y+2)^2;

                                 2    2              2
                           f := x  + y  + (x + y + 2)
--------------------------------------------------------------------------------
> g:=x^3+y^3-(x+y+2)^3;\


                                 3    3              3
                           g := x  + y  - (x + y + 2)
--------------------------------------------------------------------------------
# We want to find all (x,y) such that f(x,y)=-2 and g(x,y)=-2.  Then the solutions to the 
# original equations are (x,y,z)=(x,y,-x-y-2).  Thus we first solve for y in the quadratic 
# equation f(x,y)=-2, obtaining 2 functions of x, which we then substitute into the cubic 
# equation g(x,y)=-2.  We expect a total of 6 solutions. 
--------------------------------------------------------------------------------
> Y:=solve(f=-2,y);

Y :=

                        2           1/2                          2           1/2
- 1/2 x - 1 + 1/2 (- 3 x  - 4 x - 8)   , - 1/2 x - 1 - 1/2 (- 3 x  - 4 x - 8)
--------------------------------------------------------------------------------
> Y1:=unapply(Y[1],x);

                                                  2           1/2
               Y1 := x -> - 1/2 x - 1 + 1/2 (- 3 x  - 4 x - 8)
--------------------------------------------------------------------------------
> Y2:=unapply(Y[2],x);

                                                  2           1/2
               Y2 := x -> - 1/2 x - 1 - 1/2 (- 3 x  - 4 x - 8)
--------------------------------------------------------------------------------
> h(x):=expand(subs(y=Y1(x),g));

                                    3            2
                         h(x) := 3 x  + 9 x + 6 x  + 10
--------------------------------------------------------------------------------
# Substituting y=Y2(x) into g will produce the same cubic, so we only need h(x).
--------------------------------------------------------------------------------
> h1(x):=expand(subs(y=Y2(x),g));

                                     3            2
                         h1(x) := 3 x  + 9 x + 6 x  + 10
--------------------------------------------------------------------------------
> X:=solve(h(x)=-2,x); 

                                    5
             X := - %2 + ---------------------- - 2/3,
                           / 35         1/2\1/3
                         9 |---- + 5/9 6   |
                           \ 27            /

                                     5
                 1/2 %2 - ----------------------- - 2/3
                             / 35         1/2\1/3
                          18 |---- + 5/9 6   |
                             \ 27            /

                               1/2 /                  5          \
                      + 1/2 I 3    |- %2 - ----------------------|,
                                   |         / 35         1/2\1/3|
                                   |       9 |---- + 5/9 6   |   |
                                   \         \ 27            /   /

                                     5
                 1/2 %2 - ----------------------- - 2/3
                             / 35         1/2\1/3
                          18 |---- + 5/9 6   |
                             \ 27            /

                               1/2 /                  5          \
                      - 1/2 I 3    |- %2 - ----------------------|
                                   |         / 35         1/2\1/3|
                                   |       9 |---- + 5/9 6   |   |
                                   \         \ 27            /   /

                                       1
%1 :=                        --------------------
                             / 35         1/2\1/3
                             |---- + 5/9 6   |
                             \ 27            /

                             / 35         1/2\1/3
%2 :=                        |---- + 5/9 6   |
                             \ 27            /
--------------------------------------------------------------------------------
# These expressions are the x coordinates at the points of intersection.  
--------------------------------------------------------------------------------
> evalf(X);

  -1.650629192,  - .1746854042 - 1.546868888 I,  - .1746854042 + 1.546868888 I
--------------------------------------------------------------------------------
>  for j from 1 to 3 do x[j]:=evalf(X[j]):y[j]:=Y1(evalf(X[j])) od ;j:='j':

                              x[1] := -1.650629192

                     y[1] :=  - .1746854040 + 1.546868888 I

                     x[2] :=  - .1746854042 - 1.546868888 I

                     y[2] :=  - .1746854034 + 1.546868888 I

                     x[3] :=  - .1746854042 + 1.546868888 I

                     y[3] :=  - .1746854034 - 1.546868888 I
--------------------------------------------------------------------------------
>  for j from 1 to 3 do x[j+3]:=evalf(X[j]);y[j+3]:=Y2(evalf(X[j])) od ;j:='j':

                              x[4] := -1.650629192

                     y[4] :=  - .1746854040 - 1.546868888 I

                     x[5] :=  - .1746854042 - 1.546868888 I

                                                     -9
                       y[5] :=  - 1.650629192 + .5*10   I

                     x[6] :=  - .1746854042 + 1.546868888 I

                                                     -9
                       y[6] :=  - 1.650629192 - .5*10   I
--------------------------------------------------------------------------------
# Now we print out the 6 solutions.
--------------------------------------------------------------------------------
> for j from 1 to 6 do print(S[j]=[x[j],y[j],-x[j]-y[j]-2]) od;j:='j':

S[1] =

   [-1.650629192,  - .1746854040 + 1.546868888 I,  - .174685404 - 1.546868888 I]

S[2] =

  [ - .1746854042 - 1.546868888 I,  - .1746854034 + 1.546868888 I, -1.650629192]

S[3] =

  [ - .1746854042 + 1.546868888 I,  - .1746854034 - 1.546868888 I, -1.650629192]

S[4] =

   [-1.650629192,  - .1746854040 - 1.546868888 I,  - .174685404 + 1.546868888 I]

                                                                    -9
      S[5] = [ - .1746854042 - 1.546868888 I,  - 1.650629192 + .5*10   I,

           - .174685404 + 1.546868888 I]

                                                                    -9
      S[6] = [ - .1746854042 + 1.546868888 I,  - 1.650629192 - .5*10   I,

           - .174685404 - 1.546868888 I]
--------------------------------------------------------------------------------
# Next we check the residuals to make sure all values are close to 2. 
--------------------------------------------------------------------------------
> for j from 1 to 6 do subs(x=x[j],y=y[j],f);subs(x=x[j],y=y[j],g) od;j:='j':

                                  -2.000000003

                                  -2.000000006

                                                  -8
                            - 2.000000000 + .25*10   I

                                                 -8
                            - 2.000000018 - .1*10   I

                                                  -8
                            - 2.000000000 - .25*10   I

                                                 -8
                            - 2.000000018 + .1*10   I

                                  -2.000000003

                                  -2.000000006

                                                      -8
                        - 2.000000003 - .1050629192*10   I

                                                      -8
                        - 2.000000005 + .4086865094*10   I

                                                      -8
                        - 2.000000003 + .1050629192*10   I

                                                      -8
                        - 2.000000005 - .4086865094*10   I
--------------------------------------------------------------------------------
> f:='f':g:='g':Y:='Y':Y1:='Y1':Y2:='Y2':h:='h':X:='X':S:='S':
--------------------------------------------------------------------------------
# There is another approach to this question.  Notice that the original equations are 
# symmetric in x,y and z, so if we find one solution then we get 5 more by permuting the 
# coordinates.
--------------------------------------------------------------------------------
# QUESTION #2
--------------------------------------------------------------------------------
# SOLUTION
--------------------------------------------------------------------------------
# 2(a)
--------------------------------------------------------------------------------
> f:=x->(x+1)/(x^3+x+1);

                                           x + 1
                              f := x -> ----------
                                         3
                                        x  + x + 1
--------------------------------------------------------------------------------
> F(x):=int(f(x),x);

                        -----
                         \                93    2   124       14
               F(x) :=    )    _R ln(x + ---- _R  + --- _R + ----)
                         /                47         47       47
                        -----
                       _R = %1

                                      3
%1 :=                     RootOf(31 _Z  + 7 _Z - 1)
--------------------------------------------------------------------------------
# 2(b)
--------------------------------------------------------------------------------
> diff(F(x),x);

                                      x + 1
                                   ----------
                                    3
                                   x  + x + 1
--------------------------------------------------------------------------------
> f:='f':F:='F':
--------------------------------------------------------------------------------
# QUESTION #3
--------------------------------------------------------------------------------
# 3(a)
--------------------------------------------------------------------------------
> g:=x->floor(x/Pi);

                                                x
                              g := x -> floor(----)
                                               Pi
--------------------------------------------------------------------------------
# This function gives the correct values on the interval 0<x<2*Pi.
--------------------------------------------------------------------------------
> plot(g(x),x=0..4*Pi,title=`the graph of floor(x/2*Pi)`);
--------------------------------------------------------------------------------
# 

   ** Maple V Graphics **

--------------------------------------------------------------------------------
# The vertical line segments are not part of the graph.  It consists of horizontal line 
# segments of length Pi starting at x=0 and jumping up by 1 unit at every multiple of Pi.
--------------------------------------------------------------------------------
# 
> gper:=x->g(x-2*Pi*floor(x/(2*Pi)));

                                                        x
                    gper := x -> g(x - 2 Pi floor(1/2 ----))
                                                       Pi
--------------------------------------------------------------------------------
> with(plots):
--------------------------------------------------------------------------------
> G:=plot(gper(x),x=-2*Pi..2*Pi,y=-1..2):
--------------------------------------------------------------------------------
> display(G,title=`periodic extension of g(x)`);
--------------------------------------------------------------------------------
# 

   ** Maple V Graphics **

# 
--------------------------------------------------------------------------------
# 3(b)
--------------------------------------------------------------------------------
> A:=(1/Pi)*int(g(x)*cos(n*x),x=0..2*Pi);

                             2 Pi
                              /
                             |            x
                             |    floor(----) cos(n x) dx
                             |           Pi
                            /
                            0
                       A := -----------------------------
                                          Pi
--------------------------------------------------------------------------------
# Since g(x)=0 for 0<x<Pi and g(x)=1 for Pi<x<2*Pi we have, at least for n>0:
--------------------------------------------------------------------------------
> A:=(1/Pi)*int(cos(n*x),x=Pi..2*Pi);

                               sin(2 n Pi)   sin(n Pi)
                               ----------- - ---------
                                    n            n
                          A := -----------------------
                                          Pi
--------------------------------------------------------------------------------
> weknow1:=sin(2*n*Pi)=0,sin(n*Pi)=0;

                    weknow1 := sin(2 n Pi) = 0, sin(n Pi) = 0
--------------------------------------------------------------------------------
> subs(weknow1,A);

                                        0
--------------------------------------------------------------------------------
# Thus all a[n]=0, n>0.  For a[0] we have:
--------------------------------------------------------------------------------
> a[0]=(1/Pi)*int(1,x=Pi..2*Pi);

                                    a[0] = 1
--------------------------------------------------------------------------------
# Notice that gper(x)-1/2 is an odd function.
--------------------------------------------------------------------------------
> B:=(1/Pi)*int(sin(n*x),x=Pi..2*Pi);

                                cos(2 n Pi)   cos(n Pi)
                              - ----------- + ---------
                                     n            n
                         B := -------------------------
                                          Pi
--------------------------------------------------------------------------------
> weknow2:=cos(2*n*Pi)=1,cos(n*Pi)=(-1)^n;

                                                              n
                  weknow2 := cos(2 n Pi) = 1, cos(n Pi) = (-1)
--------------------------------------------------------------------------------
> subs(weknow2,B);

                                              n
                                          (-1)
                                  - 1/n + -----
                                            n
                                  -------------
                                        Pi
--------------------------------------------------------------------------------
# Thus the b[n] coefficients are: 
--------------------------------------------------------------------------------
> b[2*n]=0;b[2*n-1]=-2/((2*n-1)*Pi);

                                   b[2 n] = 0

                                                2
                           b[2 n - 1] = - ------------
                                          (2 n - 1) Pi
--------------------------------------------------------------------------------
# The Fourier series is given by:
--------------------------------------------------------------------------------
> Fourier(x)=1/2-(2/Pi)*sum((1/(2*n-1))*sin((2*n-1)*x),n=1..infinity);

                                      infinity
                                       -----
                                        \      sin((2 n - 1) x)
                                         )     ----------------
                                        /           2 n - 1
                                       -----
                                       n = 1
                 Fourier(x) = 1/2 - 2 -------------------------
                                                  Pi
--------------------------------------------------------------------------------
# 3(c)
--------------------------------------------------------------------------------
> S:=n->1/2-(2/Pi)*sum((1/(2*k-1))*sin((2*k-1)*x),k=1..n);

                                        n
                                      -----
                                       \    sin((2 k - 1) x)
                                        )   ----------------
                                       /         2 k - 1
                                      -----
                                      k = 1
                    S := n -> 1/2 - 2 ----------------------
                                                Pi
--------------------------------------------------------------------------------
> S(1);S(2);S(3);

                                         sin(x)
                                 1/2 - 2 ------
                                           Pi

                                  sin(x) + 1/3 sin(3 x)
                          1/2 - 2 ---------------------
                                            Pi

                          sin(x) + 1/3 sin(3 x) + 1/5 sin(5 x)
                  1/2 - 2 ------------------------------------
                                           Pi
--------------------------------------------------------------------------------
> for n from 1 to 30 do P.n:=plot(S(n),x=0..2*Pi) od:n:='n':
--------------------------------------------------------------------------------
> Gr:=plot(gper(x),x=0..2*Pi):
--------------------------------------------------------------------------------
> display([Gr,P1],title=`first partial sum`);
--------------------------------------------------------------------------------
# 

   ** Maple V Graphics **

# 
--------------------------------------------------------------------------------
> display([Gr,P1,P2],title=`first 2 partial sums`);
--------------------------------------------------------------------------------
# 

   ** Maple V Graphics **

--------------------------------------------------------------------------------
> display([Gr,P1,P2,P3],title=`first 3 partial sums`);
# 
--------------------------------------------------------------------------------
# 

   ** Maple V Graphics **

--------------------------------------------------------------------------------
> display([Gr,P1,P2,P3,P4,P5,P6,P7,P8,P9,P10],title=`first 10 partial sums`);
--------------------------------------------------------------------------------
# 

   ** Maple V Graphics **

--------------------------------------------------------------------------------
> display([Gr,P10,P20,P30],title=`more partial sums`);
--------------------------------------------------------------------------------
# 

   ** Maple V Graphics **

--------------------------------------------------------------------------------
# 3(d)
--------------------------------------------------------------------------------
# For Gibbs' phenomenum we want to find the smallest positive critical point x[n] of S(n) 
# and then compute limit(S[n](x[n]),infinity).  Thus we are approximating the excess by 
# approaching 0 from the right.  We get similar results if we approach from the left or if we 
# approach Pi. 
--------------------------------------------------------------------------------
> S:=n->1/2-(2/Pi)*sum((1/(2*k-1))*sin((2*k-1)*x),k=1..n);

                                        n
                                      -----
                                       \    sin((2 k - 1) x)
                                        )   ----------------
                                       /         2 k - 1
                                      -----
                                      k = 1
                    S := n -> 1/2 - 2 ----------------------
                                                Pi
--------------------------------------------------------------------------------
# The derivative of S(n)(x) is given by f(x) as follows.
--------------------------------------------------------------------------------
> f:=n->(-2/Pi)*sum(cos((2*k-1)*x),k=1..n);

                                      n
                                    -----
                                     \
                                      )   cos((2 k - 1) x)
                                     /
                                    -----
                                    k = 1
                      f := n -> - 2 ----------------------
                                              Pi
--------------------------------------------------------------------------------
> f(n);

- 2 (- cos(x (n + 1))

                                              2
    (2 cos(x) cos(x (n + 1)) sin(x) - 2 cos(x)  sin(x (n + 1)) + sin(x (n + 1)))

    /sin(x) + cos(x))/Pi
--------------------------------------------------------------------------------
# Maple knows some trig.
--------------------------------------------------------------------------------
> expand(");

                            2                             4
      sin(x) cos(n x) cos(x)  sin(n x)     cos(n x) cos(x)  sin(n x)
  - 4 -------------------------------- - 4 -------------------------
                     Pi                            Pi sin(x)

                          2                      2
           cos(n x) cos(x)  sin(n x)     cos(n x)  cos(x)
       + 2 ------------------------- + 2 ----------------
                   Pi sin(x)                    Pi

                 2         2                    2       3             2
           sin(x)  sin(n x)  cos(x)     sin(n x)  cos(x)      sin(n x)  cos(x)
       + 4 ------------------------ + 4 ----------------- - 2 ----------------
                      Pi                        Pi                   Pi

           sin(x) sin(n x) cos(n x)     cos(x)
       - 2 ------------------------ - 2 ------
                      Pi                  Pi
--------------------------------------------------------------------------------
# We want to find positive, but close to zero, values of x so that this last expression is 0.  
# For values of x close to 0 we may replace sin(n*x)/sin(x) by n and cos(x) by 1.  We may 
# also omit any term that has sin(x) in the numerator and is not zero in the denominator.  
# If we do this then we get the following function.  
--------------------------------------------------------------------------------
> h:=x->(-4*n/Pi)*cos(n*x)+(2*n/Pi)*cos(n*x)+(2/Pi)*cos(n*x)^2+(2/Pi)*(sin(n*x))^2-2/Pi;

                                                2             2
                         n cos(n x)     cos(n x)      sin(n x)      2
           h := x -> - 2 ---------- + 2 --------- + 2 --------- - ----
                             Pi             Pi            Pi       Pi
--------------------------------------------------------------------------------
# This simplifies to:
--------------------------------------------------------------------------------
> h:=x->-(2*n/Pi)*cos(n*x);

                                          n cos(n x)
                            h := x -> - 2 ----------
                                              Pi
--------------------------------------------------------------------------------
> h(0);

                                          n
                                    - 2 ----
                                         Pi
--------------------------------------------------------------------------------
> h(Pi/(2*n));

                                        0
--------------------------------------------------------------------------------
> h(Pi/n);

                                         n
                                     2 ----
                                        Pi
--------------------------------------------------------------------------------
> x[n]:=Pi/(2*n);

                                             Pi
                                x[n] := 1/2 ----
                                              n
--------------------------------------------------------------------------------
# Thus as x went from 0 to Pi/n, h(x) went from the large negative value -2*n/Pi to the 
# large positive value 2*n/Pi, with h(x)=0 at the mid point Pi/(2*n).  Thus we should expect 
# f(n) to have a zero quite close to x[n]. 
--------------------------------------------------------------------------------
> G:=n->evalf(subs(x=Pi/(2*n),S(n))):
--------------------------------------------------------------------------------
> starttime:=time():
--------------------------------------------------------------------------------
> for n from 1 to 500 do G(n) od:n:='n':
--------------------------------------------------------------------------------
> endtime:=time()-starttime;

                               endtime := 376.650
--------------------------------------------------------------------------------
> G(50);G(60);G(70);G(80);G(90);G(100);

                                  -.0895065396

                                  -.0895014468

                                  -.0894983760

                                  -.0894963828

                                  -.0894950162

                                  -.0894940390
--------------------------------------------------------------------------------
> for n from 480 to 500 do G(n) od;n:='n':

                                  -.0894900540

                                  -.0894900522

                                  -.0894900516

                                  -.0894900510

                                  -.0894900504

                                  -.0894900494

                                  -.0894900490

                                  -.0894900480

                                  -.0894900468

                                  -.0894900464

                                  -.0894900456

                                  -.0894900442

                                  -.0894900442

                                  -.0894900434

                                  -.0894900428

                                  -.0894900422

                                  -.0894900420

                                  -.0894900412

                                  -.0894900398

                                  -.0894900390

                                  -.0894900384
--------------------------------------------------------------------------------
# It would seem that limit(S(n)(x[n],n=infinity) is approximately.-0.08949
--------------------------------------------------------------------------------
# QUESTION #4
--------------------------------------------------------------------------------
>  f:=(x,y)->x^3+y^3-3*x*y;\


                                         3    3
                          f := (x,y) -> x  + y  - 3 x y
--------------------------------------------------------------------------------
>  f1:=D[1](f);f2:=D[2](f);

                                              2
                            f1 := (x,y) -> 3 x  - 3 y

                                              2
                            f2 := (x,y) -> 3 y  - 3 x
--------------------------------------------------------------------------------
> solve({f1(x,y),f2(x,y)},{x,y});\


         {y = 0, x = 0}, {y = 1, x = 1},

                           2                           2
             {y = RootOf(_Z  + _Z + 1), x = - RootOf(_Z  + _Z + 1) - 1}
--------------------------------------------------------------------------------
# Thus there are 2 critical points, (x,y)=(0,0), (1,1).  The other solution  is complex.
--------------------------------------------------------------------------------
> with(linalg):\

Warning: new definition for   norm
Warning: new definition for   trace

--------------------------------------------------------------------------------
>  H:=hessian(f(x,y),[x,y]);

                                     [ 6 x   -3 ]
                                H := [          ]
                                     [  -3  6 y ]
--------------------------------------------------------------------------------
> x:=0;y:=0;

                                     x := 0

                                     y := 0
--------------------------------------------------------------------------------
>  A1:=matrix(2,2,[H[1,1],H[1,2],H[2,1],H[2,2]]);

                                      [  0  -3 ]
                                A1 := [        ]
                                      [ -3   0 ]
--------------------------------------------------------------------------------
> eigenvals(A1);

                                      3, -3
--------------------------------------------------------------------------------
# The eigenvalues have opposite sign and therefore (0,0) is a saddle point.
--------------------------------------------------------------------------------
>  x:='x';y:='y';

                                     x := x

                                     y := y
--------------------------------------------------------------------------------
>  x:=1;y:=1;

                                     x := 1

                                     y := 1
--------------------------------------------------------------------------------
> A2:=matrix(2,2,[H[1,1],H[1,2],H[2,1],H[2,2]]);

                                      [  6  -3 ]
                                A2 := [        ]
                                      [ -3   6 ]
--------------------------------------------------------------------------------
>  eigenvals(A2);

                                      9, 3
--------------------------------------------------------------------------------
# The eigenvalues are both positive and therefore (1,1) is a local minimum.
--------------------------------------------------------------------------------
# QUESTION #5
--------------------------------------------------------------------------------
# 5(a)
--------------------------------------------------------------------------------
> int(1/(sin(x)-1/2),x=0..Pi);

                           1/2           1/2              1/2
                  - 2/3 I 3    Pi + 4/3 3    arctanh(2/3 3   )
--------------------------------------------------------------------------------
> evalf(");

                           3.041383981 - 7.255197458 I
--------------------------------------------------------------------------------
# Maple has an answer for this integral, but clearly it is not correct.  The answer is 
# complex, but the integrand is real and therefore so should the answer be real.  The trouble 
# is that the integrand f(x)=1/(sin(x)-1/2) has singularities at x=Pi/6 and 5*Pi/6, and Maple 
# has outsmarted itself in the way it handled these singularities.  The integral actually 
# diverges.
--------------------------------------------------------------------------------
> sin(Pi/6);sin(5*Pi/6);

                                       1/2

                                       1/2
--------------------------------------------------------------------------------
> limit((sin(x)-1/2)/(x-Pi/6),x=Pi/6);limit((sin(x)-1/2)/(x-5*Pi/6),x=5*Pi/6);

                                         1/2
                                    1/2 3

                                          1/2
                                   - 1/2 3
--------------------------------------------------------------------------------
# Since the integrals int(1/(x-Pi/6,x=0..Pi) and  int(1/(x-5*Pi/6,x=0..Pi) diverge so does 
# int(1/(sin(x)-1/2),x=0..Pi). 
--------------------------------------------------------------------------------
# 5(b)
--------------------------------------------------------------------------------
# The integral int(1/(sin(x)-1/2),x=Pi/4..Pi) still diverges because of the singularity at
# x=5*Pi/6.  I meant to ask about int(1/(sin(x)-1/2),x=Pi/4..Pi/2).   
--------------------------------------------------------------------------------
> int(1/(sin(x)-1/2),x=Pi/4..Pi/2);

             1/2              1/2         1/2               1/2       1/2
      - 4/3 3    arctanh(1/3 3   ) - 4/3 3    arctanh(1/3 (2    - 3) 3   )
--------------------------------------------------------------------------------
> evalf(");

                                   2.083882042
--------------------------------------------------------------------------------