# # - # # # WORKSHEET#17 # # A system of non-polynomial equations revisited # # -------------------------------------------------------------------------------- # We reconsider the critical point analysis for the function f(x,y) from the last worksheet. -------------------------------------------------------------------------------- > f:=(x,y)->sin(y-x^2-1)+cos(2*y^2-x); 2 2 f := (x,y) -> sin(y - x - 1) + cos(2 y - x) -------------------------------------------------------------------------------- > f1:=D[1](f);f2:=D[2](f); 2 2 f1 := (x,y) -> - 2 cos(- y + x + 1) x - sin(- 2 y + x) 2 2 f2 := (x,y) -> cos(- y + x + 1) + 4 sin(- 2 y + x) y -------------------------------------------------------------------------------- > e1:=f1(x,y)=0;e2:=f2(x,y)=0; 2 2 e1 := - 2 cos(- y + x + 1) x - sin(- 2 y + x) = 0 2 2 e2 := cos(- y + x + 1) + 4 sin(- 2 y + x) y = 0 -------------------------------------------------------------------------------- > e1+2*x*e2; 2 2 - 2 cos(- y + x + 1) x - sin(- 2 y + x) 2 2 + 2 x (cos(- y + x + 1) + 4 sin(- 2 y + x) y) = 0 -------------------------------------------------------------------------------- > simplify("); 2 2 - sin(- 2 y + x) + 8 x sin(- 2 y + x) y = 0 -------------------------------------------------------------------------------- > factor("); 2 sin(- 2 y + x) (- 1 + 8 x y) = 0 -------------------------------------------------------------------------------- > e3:="; 2 e3 := sin(- 2 y + x) (- 1 + 8 x y) = 0 -------------------------------------------------------------------------------- > simplify(4*y*e1+e2); 2 2 - 8 y cos(- y + x + 1) x + cos(- y + x + 1) = 0 -------------------------------------------------------------------------------- > e4:=factor("); 2 e4 := - cos(- y + x + 1) (- 1 + 8 x y) = 0 -------------------------------------------------------------------------------- # By elementary manipulation of equations we have reduced the more complicated system # of equations e1=0, e2=0 to the much easier, but equivalent system, e3=0, e4=0. By # inspection we see that the solutions of this system are given by either 8xy=1 or # # sin(-2y^2+x)=0 and cos(-y+x^2+1)=0. # # What does Maple say about these equations? -------------------------------------------------------------------------------- > solve(e3,x); 2 1 2 y , --- 8 y -------------------------------------------------------------------------------- # Maple does not give the complete solution of the equation (-1+8xy)sin(-2y^2+x)=0. But # we can easily see that the complete solution is either 8xy=1 or x=2y^2+mPi, where m is # any integer. # # As far as e4=0 is concerned we see that the complete solution is either 8xy=1 or # # y=x^2+1+(n+1/2)Pi, where n is an integer. # # Thus there are 2 types of critical points for f(x,y)=sin(y-x^2-1)+cos(2*y^2-x), namely # those points (x,y) where either 8xy=1 or # # x=2y^2+mPi and y=x^2+1+(n+1/2)Pi for some integers m,n. # # Notice that if x=2y^2+mPi and y=x^2+1+(n+1/2)Pi for some integers m,n then # f(x,y)=sin(y-x^2-1)+cos(2y^2-x)=sin((n+1/2)Pi)+cos(-mPi)=(-1)^n+(-1)^m, and this # equals -2, +2 or 0. Since f(x,y) assumes values between -2 and +2 we know that those # points where f=2 are maxima and those points where f=-2 are minima. # -------------------------------------------------------------------------------- > subs({x-2*y^2=m*Pi,-y+x^2+1=(n+1/2)*Pi},f(x,y)); - sin((n + 1/2) Pi) + cos(m Pi) > A:=simplify("); A := - cos(Pi n) + cos(m Pi) -------------------------------------------------------------------------------- > weknow:=sin(n*Pi)=0,sin(m*Pi)=0,cos(m*Pi)=(-1)^m,cos(n*Pi)=(-1)^n,\ sin((n+1/2)*Pi)=(-1)^n,cos((n+1/2)*Pi)=0; m n weknow := sin(Pi n) = 0, sin(m Pi) = 0, cos(m Pi) = (-1) , cos(Pi n) = (-1) , n sin((n + 1/2) Pi) = (-1) , cos((n + 1/2) Pi) = 0 > subs(weknow,A);\ n m - (-1) + (-1) > with(linalg): Warning: new definition for norm Warning: new definition for trace -------------------------------------------------------------------------------- > H:=hessian(f(x,y),[x,y]); H := 2 2 2 2 [4 sin(- y + x + 1) x - 2 cos(- y + x + 1) - cos(- 2 y + x), 2 2 - 2 sin(- y + x + 1) x + 4 cos(- 2 y + x) y] 2 2 [- 2 sin(- y + x + 1) x + 4 cos(- 2 y + x) y, 2 2 2 2 sin(- y + x + 1) - 16 cos(- 2 y + x) y + 4 sin(- 2 y + x)] -------------------------------------------------------------------------------- # > H; H -------------------------------------------------------------------------------- # This is a bit peculiar. # -------------------------------------------------------------------------------- > eval(H); 2 2 2 2 [4 sin(- y + x + 1) x - 2 cos(- y + x + 1) - cos(- 2 y + x), 2 2 - 2 sin(- y + x + 1) x + 4 cos(- 2 y + x) y] 2 2 [- 2 sin(- y + x + 1) x + 4 cos(- 2 y + x) y, 2 2 2 2 sin(- y + x + 1) - 16 cos(- 2 y + x) y + 4 sin(- 2 y + x)] -------------------------------------------------------------------------------- > H[1,1]; 2 2 2 2 4 sin(- y + x + 1) x - 2 cos(- y + x + 1) - cos(- 2 y + x) -------------------------------------------------------------------------------- > subs({x-2*y^2=m*Pi,-y+x^2+1=(n+1/2)*Pi},eval(H)); 2 [4 sin((n + 1/2) Pi) x - 2 cos((n + 1/2) Pi) - cos(m Pi), - 2 sin((n + 1/2) Pi) x + 4 cos(m Pi) y] [- 2 sin((n + 1/2) Pi) x + 4 cos(m Pi) y, 2 sin((n + 1/2) Pi) - 16 cos(m Pi) y + 4 sin(m Pi)] -------------------------------------------------------------------------------- > subs(weknow,"); [ n 2 m n m ] [ 4 (-1) x - (-1) - 2 (-1) x + 4 (-1) y ] [ ] [ n m n m 2 ] [ - 2 (-1) x + 4 (-1) y (-1) - 16 (-1) y ] -------------------------------------------------------------------------------- > det("); n 2 m 2 m n n m - 64 (-1) x (-1) y - (-1) (-1) + 16 (-1) x (-1) y -------------------------------------------------------------------------------- > factor("); m n 2 - (-1) (-1) (- 1 + 8 x y) -------------------------------------------------------------------------------- # Assume that 8xy is not equal to 1. If m and n have the same parity then the determinant # is negative, in which case we have a saddle point. If m and n have opposite parity then # the critical point can be either a maximum or a minimum. To decide which merely # examine the [1,1] entry of the hessian. If this is positive then both eigenvalues will be # positive and if it is negative both eigenvalues will be negative. --------------------------------------------------------------------------------